Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38383971

RESUMO

Diseases of the human nervous system are an important cause of morbidity and mortality worldwide. These disorders arise out of multiple aetiologies of which rare genetic mutations in genes vital to nervous system development and function are an important cause. The diagnosis of such rare disorders is challenging due to the close overlap of clinical presentations with other diseases that are not of genetic origin. Further, understanding the mechanisms by which mutations lead to altered brain structure and function is also challenging, given that the brain is not readily accessible for tissue biopsy. However, recent developments in modern technologies have opened up new opportunities for the analysis of rare genetic disorders of the brain. In this review, we discuss these developments and strategies by which they can be applied effectively for better understanding of rare diseases of the brain. This will lead to the development of new clinical strategies to manage brain disorders.


Assuntos
Encéfalo , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Mutação , Biologia
2.
Biol Open ; 11(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35023542

RESUMO

Human brain development is a complex process where multiple cellular and developmental events are coordinated to generate normal structure and function. Alteration in any of these events can impact brain development, manifesting clinically as neurodevelopmental disorders. Human genetic disorders of lipid metabolism often present with features of altered brain function. Lowe syndrome (LS) is an X-linked recessive disease with features of altered brain function. LS results from mutations in OCRL1, which encodes a phosphoinositide 5-phosphatase enzyme. However, the cellular mechanisms by which loss of OCRL1 leads to brain defects remain unknown. Human brain development involves several cellular and developmental features not conserved in other species and understanding such mechanisms remains a challenge. Rodent models of LS have been generated but failed to recapitulate features of the human disease. Here we describe the generation of human stem cell lines from LS patients. Further, we present biochemical characterization of lipid metabolism in patient cell lines and demonstrate their use as a 'disease-in-a-dish' model for understanding the mechanism by which loss of OCRL1 leads to altered cellular and physiological brain development. This article has an associated First Person interview with the first author of the paper.


Assuntos
Síndrome Oculocerebrorrenal , Encéfalo/metabolismo , Linhagem Celular , Humanos , Mutação , Síndrome Oculocerebrorrenal/genética , Células-Tronco/metabolismo
3.
Wellcome Open Res ; 5: 16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32195361

RESUMO

The development of the human brain involves multiple cellular processes including cell division, migration, and dendritic growth. These processes are triggered by developmental cues and lead to interactions of neurons and glial cells to derive the final complex organization of the brain. Developmental cues are transduced into cellular processes through the action of multiple intracellular second messengers including calcium. Calcium signals in cells are shaped by large number of proteins and mutations in several of these have been reported in human patients with brain disorders.  However, the manner in which such mutations impact human brain development in vivo remains poorly understood. A key limitation in this regard is the need for a model system in which calcium signaling can be studied in neurons of patients with specific brain disorders. Here we describe a protocol to differentiate human neural stem cells into cortical neuronal networks that can be maintained as live cultures up to 120 days in a dish. Our protocol generates a 2D in vitro culture that exhibits molecular features of several layers of the human cerebral cortex. Using fluorescence imaging of intracellular calcium levels, we describe the development of neuronal activity as measured by intracellular calcium transients during development in vitro. These transients were dependent on the activity of voltage gated calcium channels and were abolished by blocking sodium channel activity. Using transcriptome analysis, we describe the full molecular composition of such cultures following differentiation in vitro thus offering an insight into the molecular basis of activity. Our approach will facilitate the understanding of calcium signaling defects during cortical neuron development in patients with specific brain disorders and a mechanistic analysis of these defects using genetic manipulations coupled with cell biological and physiological analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...